Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Journal of autoimmunity ; 2023.
Article in English | EuropePMC | ID: covidwho-2261227

ABSTRACT

Hematopoietic stem cell transplant (HSCT) recipients may be at high risk of mortality from coronavirus disease 2019 (COVID-19). However, specific data on COVID-19 after treatment with HSCT in patients affected by autoimmune diseases (ADs) are still lacking. In this multicenter observational study of the European Society for Blood and Marrow Transplantation (EBMT), clinical data on COVID-19 in 11 patients affected by severe ADs treated with HSCT (n = 3 allogeneic transplant;n = 8 autologous transplant) are reported. All patients were symptomatic during the initial phase of the SARS-CoV-2 infection. At screening, 5 patients reported upper respiratory symptoms, 3 patients had cough without oxygen requirement, and 6 patients exhibited extra-pulmonary symptoms. Four cases developed a lower respiratory tract disease (LRTD). Hospitalization was required in 6 cases, without necessity of intensive care unit (ICU) admission and/or ventilation/supplemental oxygen. Different interventions were adopted: remdesivir (n = 1), nirmatrelvir/ritonavir (n = 1), sotrovimab (n = 1), immunoglobulins (n = 1). At last follow-up, all patients solved the infection and are alive. The current analysis describing the mild-moderate course of COVID-19 in transplant recipients affected by ADs, similar to the course observed in ADs under standard treatments, provides useful information to support the delivery of HSCT programs in this field. Vaccination and new treatments available for SARS-CoV-2 infection may be useful to further minimize the infectious risks.

2.
J Autoimmun ; 136: 103024, 2023 04.
Article in English | MEDLINE | ID: covidwho-2261228

ABSTRACT

Hematopoietic stem cell transplant (HSCT) recipients may be at high risk of mortality from coronavirus disease 2019 (COVID-19). However, specific data on COVID-19 after treatment with HSCT in patients affected by autoimmune diseases (ADs) are still lacking. In this multicenter observational study of the European Society for Blood and Marrow Transplantation (EBMT), clinical data on COVID-19 in 11 patients affected by severe ADs treated with HSCT (n = 3 allogeneic transplant; n = 8 autologous transplant) are reported. All patients were symptomatic during the initial phase of the SARS-CoV-2 infection. At screening, 5 patients reported upper respiratory symptoms, 3 patients had cough without oxygen requirement, and 6 patients exhibited extra-pulmonary symptoms. Four cases developed a lower respiratory tract disease (LRTD). Hospitalization was required in 6 cases, without necessity of intensive care unit (ICU) admission and/or ventilation/supplemental oxygen. Different interventions were adopted: remdesivir (n = 1), nirmatrelvir/ritonavir (n = 1), sotrovimab (n = 1), immunoglobulins (n = 1). At last follow-up, all patients are alive and had resolution of the infection. The current analysis describing the mild-moderate course of COVID-19 in transplant recipients affected by ADs, similar to the course observed in ADs under standard treatments, provides useful information to support the delivery of HSCT programs in this field. Vaccination and new treatments available for SARS-CoV-2 may be useful to further minimize the risk of infection.


Subject(s)
Autoimmune Diseases , COVID-19 , Hematopoietic Stem Cell Transplantation , Humans , SARS-CoV-2 , RNA, Viral , Transplant Recipients , Hematopoietic Stem Cell Transplantation/adverse effects , Autoimmune Diseases/epidemiology , Autoimmune Diseases/therapy
3.
Bone Marrow Transplant ; 58(5): 558-566, 2023 05.
Article in English | MEDLINE | ID: covidwho-2250581

ABSTRACT

Risk factors for severe SARS-Cov-2 infection course are poorly described in children following hematopoietic cell transplantation (HCT). In this international study, we analyzed factors associated with a severe course (intensive care unit (ICU) admission and/or mortality) in post-HCT children. Eighty-nine children (58% male; median age 9 years (min-max 1-18)) who received an allogeneic (85; 96%) or an autologous (4; 4%) HCT were reported from 28 centers (18 countries). Median time from HCT to SARS-Cov-2 infection was 7 months (min-max 0-181). The most common clinical manifestations included fever (37; 42%) and cough (26; 29%); 37 (42%) were asymptomatic. Nine (10%) children following allo-HCT required ICU care. Seven children (8%) following allo-HCT, died at a median of 22 days after SARS-Cov-2 diagnosis. In a univariate analysis, the probability of a severe disease course was higher in allo-HCT children with chronic GVHD, non-malignant disease, immune suppressive treatment (specifically, mycophenolate), moderate immunodeficiency score, low Lansky score, fever, cough, coinfection, pulmonary radiological findings, and high C-reactive protein. In conclusion, SARS-Cov-2 infection in children following HCT was frequently asymptomatic. Despite this, 10% needed ICU admission and 8% died in our cohort. Certain HCT, underlying disease, and SARS-Cov-2 related factors were associated with a severe disease course.


Subject(s)
COVID-19 , Communicable Diseases , Hematopoietic Stem Cell Transplantation , Humans , Male , Child , Female , Transplantation, Homologous , Prospective Studies , Bone Marrow , COVID-19 Testing , Cough/etiology , COVID-19/etiology , SARS-CoV-2 , Hematopoietic Stem Cell Transplantation/adverse effects , Risk Factors , Disease Progression , Communicable Diseases/etiology
4.
Front Immunol ; 14: 1125824, 2023.
Article in English | MEDLINE | ID: covidwho-2269481

ABSTRACT

Introduction: COVID-19 has been associated with high morbidity and mortality in allogeneic hematopoietic stem cell transplant (allo-HCT) recipients. Methods: This study reports on 986 patients reported to the EBMT registry during the first 29 months of the pandemic. Results: The median age was 50.3 years (min - max; 1.0 - 80.7). The median time from most recent HCT to diagnosis of COVID-19 was 20 months (min - max; 0.0 - 383.9). The median time was 19.3 (0.0 - 287.6) months during 2020, 21.2 (0.1 - 324.5) months during 2021, and 19.7 (0.1 - 383.9) months during 2022 (p = NS). 145/986 (14.7%) patients died; 124 (12.6%) due to COVID-19 and 21 of other causes. Only 2/204 (1%) fully vaccinated patients died from COVID-19. There was a successive improvement in overall survival over time. In multivariate analysis, increasing age (p<.0001), worse performance status (p<.0001), contracting COVID-19 within the first 30 days (p<.0001) or 30 - 100 days after HCT (p=.003), ongoing immunosuppression (p=.004), pre-existing lung disease (p=.003), and recipient CMV seropositivity (p=.004) had negative impact on overall survival while patients contracting COVID-19 in 2020 (p<.0001) or 2021 (p=.027) had worse overall survival than patients with COVID-19 diagnosed in 2022. Discussion: Although the outcome of COVID-19 has improved, patients having risk factors were still at risk for severe COVID-19 including death.


Subject(s)
COVID-19 , Communicable Diseases , Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Humans , Middle Aged , Bone Marrow , Transplantation, Homologous , COVID-19/complications , Hematopoietic Stem Cell Transplantation/adverse effects , Communicable Diseases/complications , Cytomegalovirus Infections/complications , Registries
5.
Front Immunol ; 13: 1079995, 2022.
Article in English | MEDLINE | ID: covidwho-2230341

ABSTRACT

Coevolution of microbiome and immunity at mucosal sites is essential for our health. Whether the oral microbiome, the second largest community after the gut, contributes to the immunogenicity of COVID-19 vaccines is not known. We investigated the baseline oral microbiome in individuals in the COVAXID clinical trial receiving the BNT162b2 mRNA vaccine. Participants (n=115) included healthy controls (HC; n=57) and people living with HIV (PLHIV; n=58) who met the study selection criteria. Vaccine-induced Spike antibodies in saliva and serum from 0 to 6 months were assessed and comparative analyses were performed against the individual salivary 16S ASV microbiome diversity. High- versus low vaccine responders were assessed on general, immunological, and oral microbiome features. Our analyses identified oral microbiome features enriched in high- vs. low-responders among healthy and PLHIV participants. In low-responders, an enrichment of Gram-negative, anaerobic species with proteolytic activity were found including Campylobacter, Butyrivibrio, Selenomonas, Lachnoanaerobaculum, Leptotrichia, Megasphaera, Prevotella and Stomatobaculum. In high-responders, enriched species were mainly Gram-positive and saccharolytic facultative anaerobes: Abiotrophia, Corynebacterium, Gemella, Granulicatella, Rothia, and Haemophilus. Combining identified microbial features in a classifier using the area under the receiver operating characteristic curve (ROC AUC) yielded scores of 0.879 (healthy controls) to 0.82 (PLHIV), supporting the oral microbiome contribution in the long-term vaccination outcome. The present study is the first to suggest that the oral microbiome has an impact on the durability of mucosal immunity after Covid-19 vaccination. Microbiome-targeted interventions to enhance long-term duration of mucosal vaccine immunity may be exploited.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Antibodies, Viral , Antibody Formation , BNT162 Vaccine/immunology , COVID-19/prevention & control , HIV Infections , Immunoglobulin A, Secretory , Saliva/immunology
6.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2207607

ABSTRACT

Coevolution of microbiome and immunity at mucosal sites is essential for our health. Whether the oral microbiome, the second largest community after the gut, contributes to the immunogenicity of COVID-19 vaccines is not known. We investigated the baseline oral microbiome in individuals in the COVAXID clinical trial receiving the BNT162b2 mRNA vaccine. Participants (n=115) included healthy controls (HC;n=57) and people living with HIV (PLHIV;n=58) who met the study selection criteria. Vaccine-induced Spike antibodies in saliva and serum from 0 to 6 months were assessed and comparative analyses were performed against the individual salivary 16S ASV microbiome diversity. High- versus low vaccine responders were assessed on general, immunological, and oral microbiome features. Our analyses identified oral microbiome features enriched in high- vs. low-responders among healthy and PLHIV participants. In low-responders, an enrichment of Gram-negative, anaerobic species with proteolytic activity were found including Campylobacter, Butyrivibrio, Selenomonas, Lachnoanaerobaculum, Leptotrichia, Megasphaera, Prevotella and Stomatobaculum. In high-responders, enriched species were mainly Gram-positive and saccharolytic facultative anaerobes: Abiotrophia, Corynebacterium, Gemella, Granulicatella, Rothia, and Haemophilus. Combining identified microbial features in a classifier using the area under the receiver operating characteristic curve (ROC AUC) yielded scores of 0.879 (healthy controls) to 0.82 (PLHIV), supporting the oral microbiome contribution in the long-term vaccination outcome. The present study is the first to suggest that the oral microbiome has an impact on the durability of mucosal immunity after Covid-19 vaccination. Microbiome-targeted interventions to enhance long-term duration of mucosal vaccine immunity may be exploited.

8.
Immunity ; 55(9): 1732-1746.e5, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2015472

ABSTRACT

Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , Immunity, Humoral , RNA, Messenger/genetics , Syndrome , Vaccination , Viral Envelope Proteins
10.
Leukemia ; 36(6): 1467-1480, 2022 06.
Article in English | MEDLINE | ID: covidwho-1830027

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel virus that spread worldwide from 2019 causing the Coronavirus disease 19 (COVID-19) pandemic. SARS-CoV-2 infection is characterised by an initial viral phase followed in some patients by a severe inflammatory phase. Importantly, immunocompromised patients may have a prolonged viral phase, shedding infectious viral particles for months, and absent or dysfunctional inflammatory phase. Among haematological patients, COVID-19 has been associated with high mortality rate in acute leukaemia, high risk-myelodysplastic syndromes, and after haematopoietic cell transplant and chimeric-antigen-receptor-T therapies. The clinical symptoms and signs were similar to that reported for the overall population, but the severity and outcome were worse. The deferral of immunodepleting cellular therapy treatments is recommended for SARS-CoV-2 positive patient, while in the other at-risk cases, the haematological treatment decisions must be weighed between individual risks and benefits. The gold standard for the diagnosis is the detection of viral RNA by nucleic acid testing on nasopharyngeal-swabbed sample, which provides high sensitivity and specificity; while rapid antigen tests have a lower sensitivity, especially in asymptomatic patients. The prevention of SARS-CoV-2 infection is based on strict infection control measures recommended for aerosol-droplet-and-contact transmission. Vaccinations against SARS-CoV-2 has shown high efficacy in reducing community transmission, hospitalisation and deaths due to severe COVID-19 disease in the general population, but immunosuppressed/haematology patients may have lower sero-responsiveness to vaccinations. Moreover, the recent emergence of new variants may require vaccine modifications and strategies to improve efficacy in these vulnerable patients. Beyond supportive care, the specific treatment is directed at viral replication control (antivirals, anti-spike monoclonal antibodies) and, in patients who need it, to the control of inflammation (dexamethasone, anti-Il-6 agents, and others). However, the benefit of all these various prophylactic and therapeutic treatments in haematology patients deserves further studies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Leukemia , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , SARS-CoV-2
11.
Blood Adv ; 6(9): 2723-2730, 2022 05 10.
Article in English | MEDLINE | ID: covidwho-1741922

ABSTRACT

Recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematological diseases are at risk of severe disease and death from COVID-19. To determine the safety and immunogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines, samples from 50 infection-naive allo-HSCT recipients (median, 92 months from transplantation, range, 7-340 months) and 39 healthy controls were analyzed for serum immunoglobulin G (IgG) against the receptor binding domain (RBD) within spike 1 (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; anti-RBD-S1 IgG) and for SARS-CoV-2-specific T-cell immunity, reflected by induction of T-cell-derived interferon-γ in whole blood stimulated ex vivo with 15-mer SI-spanning peptides with 11 amino acid overlap S1-spanning peptides. The rate of seroconversion was not significantly lower in allo-transplanted patients than in controls with 24% (12/50) and 6% (3/50) of patients remaining seronegative after the first and second vaccination, respectively. However, 58% of transplanted patients lacked T-cell responses against S1 peptides after 1 vaccination compared with 19% of controls (odds ratio [OR] 0.17; P = .009, Fisher's exact test) with a similar trend after the second vaccination where 28% of patients were devoid of detectable specific T-cell immunity, compared with 6% of controls (OR 0.18; P = .02, Fisher's exact test). Importantly, lack of T-cell reactivity to S1 peptides after vaccination heralded substandard levels (<100 BAU/mL) of anti-RBD-S1 IgG 5 to 6 months after the second vaccine dose (OR 8.2; P = .007, Fisher's exact test). We conclude that although allo-HSCT recipients achieve serum anti-RBD-S1 IgG against SARS-CoV-2 after 2 vaccinations, a deficiency of SARS-CoV-2-specific T-cell immunity may subsequently translate into insufficient humoral responses.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2 , Survivors , T-Lymphocytes , Vaccination
12.
Mol Med ; 28(1): 20, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1707603

ABSTRACT

Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .


Subject(s)
BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunocompromised Host/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Flow Cytometry , Humans , Killer Cells, Natural/metabolism , Lymphocyte Count , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Pandemics/prevention & control , SARS-CoV-2/physiology , Vaccination/methods , Vaccination/statistics & numerical data , Young Adult
13.
Med (N Y) ; 3(2): 137-153.e3, 2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-1705838

ABSTRACT

BACKGROUND: Immunocompromised individuals are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Whether vaccine-induced immunity in these individuals involves oral cavity, a primary site of infection, is presently unknown. METHODS: Immunocompromised patients (n = 404) and healthy controls (n = 82) participated in a prospective clinical trial (NCT04780659) encompassing two doses of the mRNA BNT162b2 vaccine. Primary immunodeficiency (PID), secondary immunodeficiencies caused by human immunodeficiency virus (HIV) infection, allogeneic hematopoietic stem cell transplantation (HSCT)/chimeric antigen receptor T cell therapy (CAR-T), solid organ transplantation (SOT), and chronic lymphocytic leukemia (CLL) patients were included. Salivary and serum immunoglobulin G (IgG) reactivities to SARS-CoV-2 spike were measured by multiplex bead-based assays and Elecsys anti-SARS-CoV-2 S assay. FINDINGS: IgG responses to SARS-CoV-2 spike antigens in saliva in HIV and HSCT/CAR-T groups were comparable to those of healthy controls after vaccination. The PID, SOT, and CLL patients had weaker responses, influenced mainly by disease parameters or immunosuppressants. Salivary responses correlated remarkably well with specific IgG titers and the neutralizing capacity in serum. Receiver operating characteristic curve analysis for the predictive power of salivary IgG yielded area under the curve (AUC) = 0.95 and positive predictive value (PPV) = 90.7% for the entire cohort after vaccination. CONCLUSIONS: Saliva conveys vaccine responses induced by mRNA BNT162b2. The predictive power of salivary spike IgG makes it highly suitable for screening vulnerable groups for revaccination. FUNDING: Knut and Alice Wallenberg Foundation, Erling Perssons family foundation, Region Stockholm, Swedish Research Council, Karolinska Institutet, Swedish Blood Cancer Foundation, PID patient organization of Sweden, Nordstjernan AB, Center for Medical Innovation (CIMED), Swedish Medical Research Council, and Stockholm County Council (ALF).


Subject(s)
COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunocompromised Host , Immunoglobulin A, Secretory , Immunoglobulin G , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Saliva , Seroconversion , Spike Glycoprotein, Coronavirus
14.
Hematology Am Soc Hematol Educ Program ; 2021(1): 587-591, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1566498

ABSTRACT

Infections are a major cause of morbidity and can result in mortality in long-term survivors after allogeneic hematopoietic cell transplantation. Chronic graft-versus-host disease and delayed immune reconstitution are recognized risk factors. Different strategies must be utilized depending on the individual patient's situation but include prolonged antimicrobial prophylaxis and vaccination. Some important infections due to pathogens preventable by vaccination are pneumococci, influenza, varicella-zoster virus, and SARS-CoV-2. Despite the fact that such recommendations have been in place for decades, implementation of these recommendations has been reported to be poor.


Subject(s)
Bacterial Infections/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Mycoses/prevention & control , Vaccination , Virus Diseases/prevention & control , Aged , Bacterial Infections/etiology , COVID-19/etiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Humans , Infections/etiology , Male , Mycoses/etiology , Transplantation, Homologous/adverse effects , Transplantation, Homologous/methods , Vaccination/adverse effects , Vaccination/methods , Vaccines/adverse effects , Vaccines/therapeutic use , Virus Diseases/etiology
15.
EBioMedicine ; 74: 103705, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1540597

ABSTRACT

BACKGROUND: Patients with immunocompromised disorders have mainly been excluded from clinical trials of vaccination against COVID-19. Thus, the aim of this prospective clinical trial was to investigate safety and efficacy of BNT162b2 mRNA vaccination in five selected groups of immunocompromised patients and healthy controls. METHODS: 539 study subjects (449 patients and 90 controls) were included. The patients had either primary (n=90), or secondary immunodeficiency disorders due to human immunodeficiency virus infection (n=90), allogeneic hematopoietic stem cell transplantation/CAR T cell therapy (n=90), solid organ transplantation (SOT) (n=89), or chronic lymphocytic leukemia (CLL) (n=90). The primary endpoint was seroconversion rate two weeks after the second dose. The secondary endpoints were safety and documented SARS-CoV-2 infection. FINDINGS: Adverse events were generally mild, but one case of fatal suspected unexpected serious adverse reaction occurred. 72.2% of the immunocompromised patients seroconverted compared to 100% of the controls (p=0.004). Lowest seroconversion rates were found in the SOT (43.4%) and CLL (63.3%) patient groups with observed negative impact of treatment with mycophenolate mofetil and ibrutinib, respectively. INTERPRETATION: The results showed that the mRNA BNT162b2 vaccine was safe in immunocompromised patients. Rate of seroconversion was substantially lower than in healthy controls, with a wide range of rates and antibody titres among predefined patient groups and subgroups. This clinical trial highlights the need for additional vaccine doses in certain immunocompromised patient groups to improve immunity. FUNDING: Knut and Alice Wallenberg Foundation, the Swedish Research Council, Nordstjernan AB, Region Stockholm, Karolinska Institutet, and organizations for PID/CLL-patients in Sweden.


Subject(s)
BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adenine/adverse effects , Adenine/analogs & derivatives , Adenine/therapeutic use , Antibodies, Viral/blood , COVID-19/prevention & control , Female , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive , Leukemia, Lymphocytic, Chronic, B-Cell , Male , Middle Aged , Mycophenolic Acid/adverse effects , Mycophenolic Acid/therapeutic use , Organ Transplantation , Piperidines/adverse effects , Piperidines/therapeutic use , Primary Immunodeficiency Diseases/immunology , Prospective Studies , Seroconversion , Spike Glycoprotein, Coronavirus/immunology , Vaccination/adverse effects , Vaccine Efficacy
18.
Blood ; 138(14): 1208-1209, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1457449
19.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: covidwho-1266400

ABSTRACT

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. COVID-19 has highly variable disease severity and a bimodal course characterized by acute respiratory viral infection followed by hyperinflammation in a subset of patients with severe disease. This immune dysregulation is characterized by lymphocytopenia, elevated levels of plasma cytokines and proliferative and exhausted T cells, among other dysfunctional cell types. Immunocompromised persons often fare worse in the context of acute respiratory infections, but preliminary data suggest this may not hold true for COVID-19. In this review, we explore the effect of SARS-CoV-2 infection on mortality in four populations with distinct forms of immunocompromise: (1) persons with hematological malignancies (HM) and hematopoietic stem cell transplant (HCT) recipients; (2) solid organ transplant recipients (SOTRs); (3) persons with rheumatological diseases; and (4) persons living with HIV (PLWH). For each population, key immunological defects are described and how these relate to the immune dysregulation in COVID-19. Next, outcomes including mortality after SARS-CoV-2 infection are described for each population, giving comparisons to the general population of age-matched and comorbidity-matched controls. In these four populations, iatrogenic or disease-related immunosuppression is not clearly associated with poor prognosis in HM, HCT, SOTR, rheumatological diseases, or HIV. However, certain individual immunosuppressants or disease states may be associated with harmful or beneficial effects, including harm from severe CD4 lymphocytopenia in PLWH and possible benefit to the calcineurin inhibitor ciclosporin in SOTRs, or tumor necrosis factor-α inhibitors in persons with rheumatic diseases. Lastly, insights gained from clinical and translational studies are explored as to the relevance for repurposing of immunosuppressive host-directed therapies for the treatment of hyperinflammation in COVID-19 in the general population.


Subject(s)
COVID-19 , Drug Repositioning , Immunocompromised Host , Immunosuppressive Agents/therapeutic use , Immunotherapy , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , Comorbidity , Drug Repositioning/methods , Drug Repositioning/statistics & numerical data , HIV Infections/epidemiology , HIV Infections/immunology , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/statistics & numerical data , Humans , Immunocompromised Host/physiology , Immunotherapy/adverse effects , Immunotherapy/methods , Immunotherapy/statistics & numerical data , Mortality , Pandemics , Prognosis , Rheumatic Diseases/epidemiology , SARS-CoV-2/physiology , Transplant Recipients/statistics & numerical data
20.
Leukemia ; 35(10): 2885-2894, 2021 10.
Article in English | MEDLINE | ID: covidwho-1253922

ABSTRACT

This study reports on 382 COVID-19 patients having undergone allogeneic (n = 236) or autologous (n = 146) hematopoietic cell transplantation (HCT) reported to the European Society for Blood and Marrow Transplantation (EBMT) or to the Spanish Group of Hematopoietic Stem Cell Transplantation (GETH). The median age was 54.1 years (1.0-80.3) for allogeneic, and 60.6 years (7.7-81.6) for autologous HCT patients. The median time from HCT to COVID-19 was 15.8 months (0.2-292.7) in allogeneic and 24.6 months (-0.9 to 350.3) in autologous recipients. 83.5% developed lower respiratory tract disease and 22.5% were admitted to an ICU. Overall survival at 6 weeks from diagnosis was 77.9% and 72.1% in allogeneic and autologous recipients, respectively. Children had a survival of 93.4%. In multivariate analysis, older age (p = 0.02), need for ICU (p < 0.0001) and moderate/high immunodeficiency index (p = 0.04) increased the risk while better performance status (p = 0.001) decreased the risk for mortality. Other factors such as underlying diagnosis, time from HCT, GVHD, or ongoing immunosuppression did not significantly impact overall survival. We conclude that HCT patients are at high risk of developing LRTD, require admission to ICU, and have increased mortality in COVID-19.


Subject(s)
COVID-19/complications , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/methods , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Female , Follow-Up Studies , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/virology , Humans , Infant , Male , Middle Aged , Prognosis , Prospective Studies , Survival Rate , Transplantation, Homologous , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL